Optimizing soft magnetic properties in FeGa/NiFe/Al₂O₃ multilayers for magnetoelectric applications

2021 AVS International Symposium and Exhibition

Adrian Acosta¹, Kevin Fitzell¹, Emily Burnside², Greg Carman², Jane P. Chang¹

¹Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, CA ²Department of Mechanical and Aerospace Engineering, University of California, Los Angeles, CA

Motivation: Strain-mediated magnetoelectric (ME) devices

Material space of magneto-elastic thin films

- Typically, a trade-off magnetic softness & magnetostriction
- Achieving desired material properties requires engineering of magnetic film nano/microstructure

Prior studies on FeGa/NiFe multilayers

- Prior studies found that multilayering of FeGa with NiFe can enhance soft magnetic properties (reduce coercivity) and increase magneto-mechanical coupling
- Origins of enhancement not properly understood in prior studies

[1] Rementer, Colin R., et al. "Tuning static and dynamic properties of FeGa/NiFe heterostructures." Applied Physics Letters 110.24 (2017): 242403.

[2] Shi, Jiaxing, et al. "A study of high piezomagnetic (Fe-Ga/Fe-Ni) multilayers for magnetoelectric device." Journal of Alloys and Compounds 806 (2019): 1465-1468.

Multilayering strategy in this work

Multilayering strategy to optimize soft magnetic properties

• Total FeGa film thickness kept constant (100 nm) and NiFe interlayer thickness kept constant (2.5 nm) with increasing # of FeGa/NiFe bilayers

[1] Acosta, A., Fitzell, K., Schneider, J.D., Dong, C., Yao, Z., Sheil, R., Wang, Y.E., Carman, G.P., Sun, N.X. and Chang, J.P., 2020. Underlayer effect on
the soft magnetic, high frequency, and magnetostrictive properties of FeGa thin films. *Journal of Applied Physics*, 128(1), p.013903.

XRD and MH loops of sputtered FeGa/NiFe films

- Multilayer stack has ~0.7% increase in compressive film strain
- 10 bilayer structure (N =10) has a coercivity of 10 Oe
- This is a further enhancement beyond underlayer effect in a single FeGa/NiFe bilayer structure (N=1)

Chang Lab UCLA

Ferromagnetic resonance for FeGa/NiFe multilayers

- <u>N = 10</u> multilayer has a comparable gilbert damping but lower inhomogeneous linewidth than <u>N = 1</u> bilayer
- Improvement is attributed to microstructural homogeneity with additional NiFe interlayers

Sample	α	ΔH₀ (Oe)
Single FeGa film	0.0851 ± 0.0190	225 ± 137
N = 1	0.0143 ± 0.0012	171 ±8
N = 10	0.0143 ± 0.0006	73 ± 4
	error reported to $\pm 1 \sigma$	

Chang Lab UCLA

Frequency

Effect of Al₂O₃ insulating interlayer in FeGa/NiFe multilayers

Summary & conclusions

- We previously found that a thin underlayer influences microstructure of FeGa thin films to improve soft magnetic properties (coercivity decrease from 85 Oe to 15 Oe)
- Using NiFe and Al_2O_3 as interlayers can be exploited to further reduce coercivity (~3 Oe) and achieve a low gilbert damping coefficient and a small inhomogeneous linewidth ($\alpha = 0.008$, $\Delta H_0 = 73$ Oe)

• FeGa/NiFe/Al₂O₃ multilayering is a promising strategy for both enhanced efficiency and switching speed for strain-mediated ME spintronic & microwave antenna devices

Acknowledgements

- Funding Support:
 - National Science Foundation TANMS ERC
- Prof. Jane Chang & Chang Lab members
- Prof. Nian Sun, NEU
- CNSI & Molecular Instrumentation Center UCLA

Chang Lab UCLA